Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21.480
1.
Nature ; 625(7995): 566-571, 2024 Jan.
Article En | MEDLINE | ID: mdl-38172634

Carbapenem-resistant Acinetobacter baumannii (CRAB) has emerged as a major global pathogen with limited treatment options1. No new antibiotic chemical class with activity against A. baumannii has reached patients in over 50 years1. Here we report the identification and optimization of tethered macrocyclic peptide (MCP) antibiotics with potent antibacterial activity against CRAB. The mechanism of action of this molecule class involves blocking the transport of bacterial lipopolysaccharide from the inner membrane to its destination on the outer membrane, through inhibition of the LptB2FGC complex. A clinical candidate derived from the MCP class, zosurabalpin (RG6006), effectively treats highly drug-resistant contemporary isolates of CRAB both in vitro and in mouse models of infection, overcoming existing antibiotic resistance mechanisms. This chemical class represents a promising treatment paradigm for patients with invasive infections due to CRAB, for whom current treatment options are inadequate, and additionally identifies LptB2FGC as a tractable target for antimicrobial drug development.


Anti-Bacterial Agents , Lipopolysaccharides , Membrane Transport Proteins , Animals , Humans , Mice , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/metabolism , Anti-Bacterial Agents/classification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Lipopolysaccharides/metabolism , Microbial Sensitivity Tests , Membrane Transport Proteins/metabolism , Biological Transport/drug effects , Disease Models, Animal , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Drug Development
2.
Nature ; 625(7995): 572-577, 2024 Jan.
Article En | MEDLINE | ID: mdl-38172635

Gram-negative bacteria are extraordinarily difficult to kill because their cytoplasmic membrane is surrounded by an outer membrane that blocks the entry of most antibiotics. The impenetrable nature of the outer membrane is due to the presence of a large, amphipathic glycolipid called lipopolysaccharide (LPS) in its outer leaflet1. Assembly of the outer membrane requires transport of LPS across a protein bridge that spans from the cytoplasmic membrane to the cell surface. Maintaining outer membrane integrity is essential for bacterial cell viability, and its disruption can increase susceptibility to other antibiotics2-6. Thus, inhibitors of the seven lipopolysaccharide transport (Lpt) proteins that form this transenvelope transporter have long been sought. A new class of antibiotics that targets the LPS transport machine in Acinetobacter was recently identified. Here, using structural, biochemical and genetic approaches, we show that these antibiotics trap a substrate-bound conformation of the LPS transporter that stalls this machine. The inhibitors accomplish this by recognizing a composite binding site made up of both the Lpt transporter and its LPS substrate. Collectively, our findings identify an unusual mechanism of lipid transport inhibition, reveal a druggable conformation of the Lpt transporter and provide the foundation for extending this class of antibiotics to other Gram-negative pathogens.


Anti-Bacterial Agents , Bacterial Outer Membrane Proteins , Lipopolysaccharides , Membrane Transport Proteins , Acinetobacter/chemistry , Acinetobacter/drug effects , Acinetobacter/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Binding Sites/drug effects , Biological Transport/drug effects , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/genetics , Cell Membrane/metabolism , Lipopolysaccharides/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microbial Viability , Protein Conformation/drug effects , Substrate Specificity
3.
Toxicol In Vitro ; 96: 105770, 2024 Apr.
Article En | MEDLINE | ID: mdl-38151217

Early neurodevelopmental processes are strictly dependent on spatial and temporally modulated of thyroid hormone (TH) availability and action. Thyroid hormone transmembrane transporters (THTMT) are critical for regulating the local concentrations of TH, namely thyroxine (T4) and 3,5,3'-tri-iodothyronine (T3), in the brain. Monocarboxylate transporter 8 (MCT8) is one of the most prominent THTMT. Genetically induced deficiencies in expression, function or localization of MCT8 are associated with irreversible and severe neurodevelopmental adversities. Due to the importance of MCT8 in brain development, studies addressing chemical interferences of MCT8 facilitated T3 uptake are a crucial step to identify TH system disrupting chemicals with this specific mode of action. Recently a non-radioactive in vitro assay has been developed to rapidly screen for endocrine disrupting chemicals (EDCs) acting upon MCT8 mediated transport. This study explored the use of an UV-light digestion step as an alternative for the original ammonium persulfate (APS) digestion step. The non-radioactive TH uptake assay, with the incorporated UV-light digestion step of TH, was then used to screen a set of 31 reference chemicals and environmentally relevant substances to detect inhibition of MCT8-depending T3 uptake. This alternative assay identified three novel MCT8 inhibitors: methylmercury, bisphenol-AF and bisphenol-Z and confirmed previously known MCT8 inhibitors.


Endocrine Disruptors , Monocarboxylic Acid Transporters , Symporters , Biological Transport/drug effects , Endocrine Disruptors/isolation & purification , Endocrine Disruptors/toxicity , Phenols/toxicity , Thyroxine , Humans , Animals , Dogs , Madin Darby Canine Kidney Cells , Monocarboxylic Acid Transporters/antagonists & inhibitors , Symporters/antagonists & inhibitors , Toxicity Tests
4.
Nature ; 623(7989): 1086-1092, 2023 Nov.
Article En | MEDLINE | ID: mdl-37914936

Monoamine neurotransmitters such as dopamine and serotonin control important brain pathways, including movement, sleep, reward and mood1. Dysfunction of monoaminergic circuits has been implicated in various neurodegenerative and neuropsychiatric disorders2. Vesicular monoamine transporters (VMATs) pack monoamines into vesicles for synaptic release and are essential to neurotransmission3-5. VMATs are also therapeutic drug targets for a number of different conditions6-9. Despite the importance of these transporters, the mechanisms of substrate transport and drug inhibition of VMATs have remained elusive. Here we report cryo-electron microscopy structures of the human vesicular monoamine transporter VMAT2 in complex with the antichorea drug tetrabenazine, the antihypertensive drug reserpine or the substrate serotonin. Remarkably, the two drugs use completely distinct inhibition mechanisms. Tetrabenazine binds VMAT2 in a lumen-facing conformation, locking the luminal gating lid in an occluded state to arrest the transport cycle. By contrast, reserpine binds in a cytoplasm-facing conformation, expanding the vestibule and blocking substrate access. Structural analyses of VMAT2 also reveal the conformational changes following transporter isomerization that drive substrate transport into the vesicle. These findings provide a structural framework for understanding the physiology and pharmacology of neurotransmitter packaging by synaptic vesicular transporters.


Neurotransmitter Agents , Reserpine , Serotonin , Tetrabenazine , Vesicular Monoamine Transport Proteins , Humans , Adrenergic Uptake Inhibitors/chemistry , Adrenergic Uptake Inhibitors/pharmacology , Biological Transport/drug effects , Cryoelectron Microscopy , Neurotransmitter Agents/chemistry , Neurotransmitter Agents/pharmacology , Reserpine/chemistry , Reserpine/pharmacology , Serotonin/metabolism , Synaptic Transmission , Tetrabenazine/chemistry , Tetrabenazine/pharmacology , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/ultrastructure , Substrate Specificity/drug effects
5.
J Biol Chem ; 299(2): 102861, 2023 02.
Article En | MEDLINE | ID: mdl-36603766

Phosphatidylinositol (PtdIns) transfer proteins (PITPs) enhance the activities of PtdIns 4-OH kinases that generate signaling pools of PtdIns-4-phosphate. In that capacity, PITPs serve as key regulators of lipid signaling in eukaryotic cells. Although the PITP phospholipid exchange cycle is the engine that stimulates PtdIns 4-OH kinase activities, the underlying mechanism is not understood. Herein, we apply an integrative structural biology approach to investigate interactions of the yeast PITP Sec14 with small-molecule inhibitors (SMIs) of its phospholipid exchange cycle. Using a combination of X-ray crystallography, solution NMR spectroscopy, and atomistic MD simulations, we dissect how SMIs compete with native Sec14 phospholipid ligands and arrest phospholipid exchange. Moreover, as Sec14 PITPs represent new targets for the development of next-generation antifungal drugs, the structures of Sec14 bound to SMIs of diverse chemotypes reported in this study will provide critical information required for future structure-based design of next-generation lead compounds directed against Sec14 PITPs of virulent fungi.


Antifungal Agents , Drug Design , Phospholipid Transfer Proteins , Saccharomyces cerevisiae Proteins , Biological Transport/drug effects , Phosphatidylinositols/metabolism , Phospholipid Transfer Proteins/antagonists & inhibitors , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Signal Transduction , Antifungal Agents/chemistry , Antifungal Agents/pharmacology
6.
Article En | MEDLINE | ID: mdl-35538807

AIMS: The present study aimed to provide summarized data related to the phytocompouds improving glucose uptake in the diabetic state. BACKGROUND: Glucose uptake in peripheral tissues such as skeletal muscle and adipose tissue is considered as an important step in the regulation of glucose homeostasis. Reducing high blood glucose levels in diabetic patients via targeting peripheral glucose uptake is a promising strategy to develop new antidiabetic medications derived from natural products. OBJECTIVE: The current review focused on antidiabetic natural phytocompounds acting on glucose uptake in adipocytes and skeletal muscles to highlight their phytochemistry, the mechanistic pathway involved, toxicity, and clinical assessment. METHODS: A systematic search was conducted in the scientific database with specific keywords on natural phytocompounds demonstrated to possess glucose uptake stimulating activity in vitro or ex vivo during the last decade. RESULTS: In total, 195 pure molecules and 7 mixtures of inseparable molecules isolated from the plants kingdom, in addition to 16 biomolecules derived from non-herbal sources, possess a potent glucose uptake stimulating capacity in adipocytes and/or skeletal muscles in adipocytes and/or skeletal muscles in vitro or ex vivo. Molecular studies revealed that these plant-derived molecules induced glucose uptake via increasing GLUT-4 expression and/or translocation through insulin signaling pathway, AMPK pathway, PTP1B activity inhibition or acting as partial PPARγ agonists. These phytocompounds were isolated from 91 plants, belonging to 57 families and triterpenoids are the most sous-class of secondary metabolites showing this activity. Among all the phytocompounds listed in the current review, only 14 biomolecules have shown an interesting activity against diabetes and its complications in clinical studies. CONCLUSION: Epicatechin, catechin, epigallocatechin 3-gallate, quercetin, quercetin 3-glucoside, berberine, rutin, linoleic acid, oleanolic acid, oleic acid, chlorogenic acid, gallic acid, hesperidin, and corosolic acid are promising phytocompounds that showed great activity against diabetes and diabetes complications in vitro and in vivo. However, for the others phytocompounds further experimental studies followed by clinical trials are needed. Finally, foods rich in these compounds cited in this review present a healthy diet for diabetic patients.


Glucose , Hypoglycemic Agents , Humans , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Insulin/metabolism , Quercetin/pharmacology , Signal Transduction , Biological Transport/drug effects
7.
J Pharm Pharm Sci ; 26: 11927, 2023.
Article En | MEDLINE | ID: mdl-38304488

Purpose: This study aims to investigate the potential of Oregon grape root extracts to modulate the activity of P-glycoprotein. Methods: We performed 3H-CsA or 3H-digoxin transport experiments in the absence or presence of two sources of Oregon grape root extracts (E1 and E2), berberine or berbamine in Caco-2 and MDCKII-MDR1 cells. In addition, real time quantitative polymerase chain reaction (RT-PCR) was performed in Caco-2 and LS-180 cells to investigate the mechanism of modulating P-glycoprotein. Results: Our results showed that in Caco-2 cells, Oregon grape root extracts (E1 and E2) (0.1-1 mg/mL) inhibited the efflux of CsA and digoxin in a dose-dependent manner. However, 0.05 mg/mL E1 significantly increased the absorption of digoxin. Ten µM berberine and 30 µM berbamine significantly reduced the efflux of CsA, while no measurable effect of berberine was observed with digoxin. In the MDCKII-MDR1 cells, 10 µM berberine and 30 µM berbamine inhibited the efflux of CsA and digoxin. Lastly, in real time RT-PCR study, Oregon grape root extract (0.1 mg/mL) up-regulated mRNA levels of human MDR1 in Caco-2 and LS-180 cells at 24 h. Conclusion: Our study showed that Oregon grape root extracts modulated P-glycoprotein, thereby may affect the bioavailability of drugs that are substrates of P-glycoprotein.


ATP Binding Cassette Transporter, Subfamily B, Member 1 , Berberine , Mahonia , Plant Extracts , Humans , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Berberine/pharmacology , Biological Transport/drug effects , Caco-2 Cells , Digoxin/metabolism , Mahonia/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Animals , Dogs , Cyclosporine/metabolism , Madin Darby Canine Kidney Cells
8.
Skin Res Technol ; 28(6): 804-814, 2022 Nov.
Article En | MEDLINE | ID: mdl-36148627

BACKGROUND: Fatty acids increase ATP-binding cassette ABC transporter A12 (ABCA12) levels via an increase in peroxisome proliferator-activated receptor ß/δ (PPAR ß/δ). Promoting lipid transport to lamellar granules has been suggested to improve epidermal barrier function in patients with dry skin. OBJECTIVE: We investigated whether mevalonolactone (MVL) produced by Saccharomycopsis fibuligera improves dry skin by promoting ABCA12 expression and the amount of free fatty acids in epidermal keratinocytes. METHODS: We examined whether MVL increases ABCA12 mRNA and protein levels and the amount of Nile red-positive lipids in cultured epidermal keratinocytes and in a three-dimensional epidermal model by cell staining. Promotion of fatty acid production by MVL was analyzed by liquid chromatography-mass spectrometry. We also evaluated whether MVL addition increases PPAR ß/δ mRNA expression in cultured keratinocytes. Based on the results, a randomized controlled trial was conducted in which milky lotions containing MVL and placebo were applied to dry facial skin of healthy female volunteers in winter. RESULTS: MVL increased ABCA12 mRNA and protein levels and lamellar granule number and size. Fatty acid analysis revealed that MVL elevated myristic acid, palmitic acid, and palmitoleic acid levels as well as PPAR ß/δ mRNA expression. In human tests, milky lotions containing MVL were shown to significantly improve transepidermal water loss (TEWL) in the stratum corneum compared to placebo. CONCLUSION: The results suggest that MVL increases fatty acid uptake and ABCA12, promotes fatty acid transport to lamellar granules, and improves epidermal barrier function in dry skin through increased expression of PPAR ß/δ.


Epidermis , Fatty Acids , Lamellar Bodies , Mevalonic Acid , PPAR-beta , Female , Humans , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Epidermis/drug effects , Epidermis/metabolism , Fatty Acids/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Lamellar Bodies/drug effects , Lamellar Bodies/metabolism , Mevalonic Acid/pharmacology , PPAR-beta/metabolism , RNA, Messenger/metabolism , Biological Transport/drug effects , Adult , Middle Aged
9.
Nature ; 609(7927): 616-621, 2022 09.
Article En | MEDLINE | ID: mdl-35917926

The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development1,2. Here we present cryo-electron microscopy structures of PIN3 from Arabidopsis thaliana in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor N-1-naphthylphthalamic acid (NPA). A. thaliana PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.


Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Apoproteins/chemistry , Apoproteins/metabolism , Apoproteins/ultrastructure , Arabidopsis/chemistry , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/ultrastructure , Biological Transport/drug effects , Cryoelectron Microscopy , Indoleacetic Acids/chemistry , Indoleacetic Acids/metabolism , Phthalimides/chemistry , Phthalimides/pharmacology , Protein Domains , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism
10.
Oxid Med Cell Longev ; 2022: 4834117, 2022.
Article En | MEDLINE | ID: mdl-35251474

Overcoming blood-brain barrier (BBB) to improve brain bioavailability of therapeutic drug remains an ongoing concern. Prodrug is one of the most reliable approaches for delivering agents with low-level BBB permeability into the brain. The well-known antioxidant capacities of cysteine (Cys) and its vital role in glutathione (GSH) synthesis indicate that Cys-based prodrug could potentiate therapeutic drugs against oxidative stress-related neurodegenerative disorders. Moreover, prodrug with Cys moiety could be recognized by the excitatory amino acid transporter 3 (EAAT3) that is highly expressed at the BBB and transports drug into the brain. In this review, we summarized the strategies of crossing BBB, properties of EAAT3 and its natural substrates, Cys and its donors, and Cys donor-based brain-targeting prodrugs by referring to recent investigations. Moreover, the challenges that we are faced with and future research orientations were also addressed and proposed. It is hoped that present review will provide evidence for the pursuit of novel Cys donor-based brain-targeting prodrug.


Antioxidants/metabolism , Antioxidants/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cysteine/metabolism , Cysteine/pharmacology , Neurodegenerative Diseases/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Animals , Biological Transport/drug effects , Excitatory Amino Acid Transporter 3/metabolism , Glutathione/metabolism , Humans , Permeability/drug effects , Prodrugs
11.
Cell Rep Med ; 3(1): 100497, 2022 01 18.
Article En | MEDLINE | ID: mdl-35106509

The blood-brain barrier (BBB) restricts clinically relevant accumulation of many therapeutics in the CNS. Low-dose methamphetamine (METH) induces fluid-phase transcytosis across BBB endothelial cells in vitro and could be used to enhance CNS drug delivery. Here, we show that low-dose METH induces significant BBB leakage in rodents ex vivo and in vivo. Notably, METH leaves tight junctions intact and induces transient leakage via caveolar transport, which is suppressed at 4°C and in caveolin-1 (CAV1) knockout mice. METH enhances brain penetration of both small therapeutic molecules, such as doxorubicin (DOX), and large proteins. Lastly, METH improves the therapeutic efficacy of DOX in a mouse model of glioblastoma, as measured by a 25% increase in median survival time and a significant reduction in satellite lesions. Collectively, our data indicate that caveolar transport at the adult BBB is agonist inducible and that METH can enhance drug delivery to the CNS.


Blood-Brain Barrier/metabolism , Caveolae/metabolism , Methamphetamine/pharmacology , Pharmaceutical Preparations/metabolism , Animals , Biological Transport/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/ultrastructure , Caveolae/drug effects , Caveolae/ultrastructure , Doxorubicin/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Female , Glioma/pathology , Mice, Inbred C57BL , Mice, Knockout , Rats, Wistar
12.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article En | MEDLINE | ID: mdl-35216119

In previous studies, we identified the two principal transporters that mediate the uptake of glutathione (GSH) from cytoplasm into the mitochondrial matrix of rat kidney proximal tubular cells. We hypothesized that genetic modulation of transporter expression could markedly alter susceptibility of renal proximal tubular cells to a broad array of oxidants and mitochondrial toxicants. Indeed, we previously showed that overexpression of either of these transporters resulted in diminished susceptibility to several chemicals. In the present work, we investigated the influence of overexpression of the mitochondrial 2-oxoglutarate carrier (OGC) in NRK-52E cells on the cytotoxicity of the antineoplastic drug cisplatin. In contrast to previous results showing that overexpression of the mitochondrial OGC provided substantial protection of NRK-52E cells from injury due to several toxicants, we found a remarkable enhancement of cellular injury from exposure to cisplatin as compared to wild-type NRK-52E cells. Despite the oxidative stress that cisplatin is known to cause in the renal proximal tubule, the increased concentrations of mitochondrial GSH associated with OGC overexpression likely resulted in increased delivery of cisplatin to molecular targets and increased cellular injury rather than the typical protection observed in the previous work.


Cisplatin/pharmacology , Glutathione/metabolism , Kidney Tubules, Proximal/drug effects , Membrane Transport Proteins/metabolism , Mitochondria/drug effects , Animals , Apoptosis/drug effects , Biological Transport/drug effects , Cell Line , Kidney Tubules, Proximal/metabolism , Mitochondria/metabolism , Oxidants/pharmacology , Oxidative Stress/drug effects , Rats
13.
Nat Commun ; 13(1): 115, 2022 01 10.
Article En | MEDLINE | ID: mdl-35013254

Efflux transporters of the RND family confer resistance to multiple antibiotics in Gram-negative bacteria. Here, we identify and chemically optimize pyridylpiperazine-based compounds that potentiate antibiotic activity in E. coli through inhibition of its primary RND transporter, AcrAB-TolC. Characterisation of resistant E. coli mutants and structural biology analyses indicate that the compounds bind to a unique site on the transmembrane domain of the AcrB L protomer, lined by key catalytic residues involved in proton relay. Molecular dynamics simulations suggest that the inhibitors access this binding pocket from the cytoplasm via a channel exclusively present in the AcrB L protomer. Thus, our work unveils a class of allosteric efflux-pump inhibitors that likely act by preventing the functional catalytic cycle of the RND pump.


Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/drug effects , Lipoproteins/chemistry , Membrane Transport Proteins/chemistry , Multidrug Resistance-Associated Proteins/chemistry , Piperazines/pharmacology , Pyridines/pharmacology , Allosteric Regulation/drug effects , Allosteric Site , Anti-Bacterial Agents/chemistry , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Biological Transport/drug effects , Crystallography, X-Ray , Drug Resistance, Multiple, Bacterial , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Lipoproteins/antagonists & inhibitors , Lipoproteins/genetics , Lipoproteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Molecular Dynamics Simulation , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Mutation , Oligopeptides/chemistry , Oligopeptides/pharmacology , Oxacillin/chemistry , Oxacillin/pharmacology , Piperazines/chemical synthesis , Promoter Regions, Genetic , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pyridines/chemical synthesis , Structure-Activity Relationship
14.
Sci Rep ; 12(1): 1429, 2022 01 26.
Article En | MEDLINE | ID: mdl-35082341

The passive transport of glucose and related hexoses in human cells is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT3 is a high-affinity glucose transporter primarily responsible for glucose entry in neurons. Changes in its expression have been implicated in neurodegenerative diseases and cancer. GLUT3 inhibitors can provide new ways to probe the pathophysiological role of GLUT3 and tackle GLUT3-dependent cancers. Through in silico screening of an ~ 8 million compounds library against the inward- and outward-facing models of GLUT3, we selected ~ 200 ligand candidates. These were tested for in vivo inhibition of GLUT3 expressed in hexose transporter-deficient yeast cells, resulting in six new GLUT3 inhibitors. Examining their specificity for GLUT1-5 revealed that the most potent GLUT3 inhibitor (G3iA, IC50 ~ 7 µM) was most selective for GLUT3, inhibiting less strongly only GLUT2 (IC50 ~ 29 µM). None of the GLUT3 inhibitors affected GLUT5, three inhibited GLUT1 with equal or twofold lower potency, and four showed comparable or two- to fivefold better inhibition of GLUT4. G3iD was a pan-Class 1 GLUT inhibitor with the highest preference for GLUT4 (IC50 ~ 3.9 µM). Given the prevalence of GLUT1 and GLUT3 overexpression in many cancers and multiple myeloma's reliance on GLUT4, these GLUT3 inhibitors may discriminately hinder glucose entry into various cancer cells, promising novel therapeutic avenues in oncology.


Drug Discovery , Glucose Transporter Type 3/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/drug effects , Small Molecule Libraries/pharmacology , Binding Sites , Biological Transport/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Glucose Transporter Type 1/antagonists & inhibitors , Glucose Transporter Type 1/chemistry , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 2/antagonists & inhibitors , Glucose Transporter Type 2/chemistry , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 3/antagonists & inhibitors , Glucose Transporter Type 3/genetics , Glucose Transporter Type 3/metabolism , Glucose Transporter Type 4/antagonists & inhibitors , Glucose Transporter Type 4/chemistry , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 5/antagonists & inhibitors , Glucose Transporter Type 5/chemistry , Glucose Transporter Type 5/genetics , Glucose Transporter Type 5/metabolism , Heterocyclic Compounds, 3-Ring/chemistry , High-Throughput Screening Assays , Humans , Models, Molecular , Neoplasms/drug therapy , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Small Molecule Libraries/chemistry
15.
Toxicol Lett ; 359: 1-9, 2022 Apr 15.
Article En | MEDLINE | ID: mdl-35066093

Mercury (Hg) is a toxic heavy metal to which humans are exposed on a regular basis. Hg has a high affinity for thiol-containing biomolecules with the majority of Hg in blood being bound to albumin. The current study tested the hypothesis that circulating Hg-albumin complexes are taken up into hepatocytes and processed to form Hg-glutathione (GSH) conjugates (GSH-Hg-GSH). Subsequently, GSH-Hg-GSH conjugates are exported from hepatocytes into blood via multidrug resistance transporters (MRP) 3 and 5. To test this hypothesis, the portal vein and hepatic artery in Wistar rats were ligated to prevent delivery of Hg to the liver. Ligated and control rats were injected with HgCl2 or GSH-Hg-GSH (containing radioactive Hg) and the disposition of Hg was assessed in various organs. Renal accumulation of Hg was reduced significantly in ligated rats exposed to HgCl2. In contrast, when rats were exposed to GSH-Hg-GSH, the renal accumulation of Hg was similar in control and ligated rats. Experiments using HepG2 cells indicate that Hg-albumin conjugates are taken up by hepatocytes and additional experiments using inside-out membrane vesicles showed that MRP3 and MRP5 mediate the export of GSH-Hg-GSH from hepatocytes. These data are the first to show that Hg-albumin complexes are processed within hepatocytes to form GSH-Hg-GSH, which is, in part, exported back into blood via MRP3 and MRP5 for eventual excretion in urine.


Glutathione/metabolism , Hepatic Artery/metabolism , Kidney Tubules, Proximal/drug effects , Mercuric Chloride/blood , Mercuric Chloride/metabolism , Mercuric Chloride/toxicity , Portal Vein/metabolism , Animals , Biological Transport/drug effects , Disease Models, Animal , Humans , Male , Rats , Rats, Wistar
16.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article En | MEDLINE | ID: mdl-35055009

The heavy metal cadmium (Cd) affects root system development and quiescent center (QC)-definition in Arabidopsis root-apices. The brassinosteroids-(BRs)-mediated tolerance to heavy metals has been reported to occur by a modulation of nitric oxide (NO) and root auxin-localization. However, how BRs counteract Cd-action in different root types is unknown. This research aimed to find correlations between BRs and NO in response to Cd in Arabidopsis's root system, monitoring their effects on QC-definition and auxin localization in root-apices. To this aim, root system developmental changes induced by low levels of 24-epibrassinolide (eBL) or by the BR-biosynthesis inhibitor brassinazole (Brz), combined or not with CdSO4, and/or with the NO-donor nitroprusside (SNP), were investigated using morpho-anatomical and NO-epifluorescence analyses, and monitoring auxin-localization by the DR5::GUS system. Results show that eBL, alone or combined with Cd, enhances lateral (LR) and adventitious (AR) root formation and counteracts QC-disruption and auxin-delocalization caused by Cd in primary root/LR/AR apices. Exogenous NO enhances LR and AR formation in Cd-presence, without synergism with eBL. The NO-signal is positively affected by eBL, but not in Cd-presence, and BR-biosynthesis inhibition does not change the low NO-signal caused by Cd. Collectively, results show that BRs ameliorate Cd-effects on all root types acting independently from NO.


Arabidopsis/drug effects , Arabidopsis/metabolism , Brassinosteroids/pharmacology , Cadmium/pharmacology , Nitric Oxide/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Biological Transport/drug effects , Drug Synergism , Gene Expression Regulation, Plant/drug effects , Plant Development , Plant Roots/growth & development
17.
Eur J Pharm Biopharm ; 170: 70-76, 2022 Jan.
Article En | MEDLINE | ID: mdl-34879228

The decades-long effort to deliver peptide drugs orally has resulted in several clinically successful formulations. These formulations are enabled by the inclusion of permeation enhancers that facilitate the intestinal absorption of peptides. Thus far, these oral peptide drugs have been limited to peptides less than 5 kDa, and it is unclear whether there is an upper bound of protein size that can be delivered with permeation enhancers. In this work, we examined two permeation enhancers, 1-phenylpiperazine (PPZ) and sodium deoxycholate (SDC), for their ability to increase intestinal transport of a model macromolecule (FITC-Dextran) as a function of its size. Specifically, the permeability of dextrans with molecular weights of 4, 10, 40, and 70 kDa was assessed in an in vitro and in vivo model of the intestine. In Caco-2 monolayers, both PPZ and SDC significantly increased the permeability of only FD4 and FD10. However, in mice, PPZ and SDC behaved differently. While SDC improved the absorption of all tested sizes of dextrans, PPZ was effective only for FD4 and FD10. This work is the first report of PPZ as a permeation enhancer in vivo, and it highlights the ability of permeation enhancers to improve the absorption of macromolecules across a broad range of sizes relevant for protein drugs.


Adjuvants, Pharmaceutic/pharmacology , Deoxycholic Acid/pharmacology , Intestinal Absorption/drug effects , Macromolecular Substances/administration & dosage , Macromolecular Substances/metabolism , Piperazines/pharmacology , Administration, Oral , Animals , Biological Transport/drug effects , Caco-2 Cells , Humans , Mice , Permeability
18.
Biochem Biophys Res Commun ; 589: 48-54, 2022 01 22.
Article En | MEDLINE | ID: mdl-34891041

Hyperglycemia, which occurs under the diabetic conditions, induces serious diabetic complications. Diabetic encephalopathy has been defined as one of the major complications of diabetes, and is characterized by neurochemical and neurodegenerative changes. However, little is known about the effect of long-term exposure to high glucose on neuronal cells. In the present study, we showed that exposure to glutamate (100 mM) for 7 days induced toxicity in primary cortical neurons using the MTT assay. Additionally, high glucose increased the sensitivity of AMPA- or NMDA-induced neurotoxicity, and decreased extracellular glutamate levels in primary cortical neurons. In Western blot analyses, the protein levels of the GluA1 and GluA2 subunits of the AMPA receptor as well as synaptophysin in neurons treated with high glucose were significantly increased compared with the control (25 mM glucose). Therefore, long-term exposure to high glucose induced neuronal death through the disruption of glutamate homeostasis.


Cerebral Cortex/pathology , Glucose/toxicity , Glutamic Acid/metabolism , Neurons/metabolism , Receptors, AMPA/metabolism , Animals , Biological Transport/drug effects , Cell Death/drug effects , Cells, Cultured , Female , N-Methylaspartate/pharmacology , Neurons/drug effects , Protein Subunits/metabolism , Rats, Wistar , Synaptophysin/metabolism , Synaptotagmins/metabolism , Vesicular Glutamate Transport Protein 1/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
20.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L116-L128, 2022 01 01.
Article En | MEDLINE | ID: mdl-34850640

Obesity impairs host defense against Klebsiella pneumoniae, but responsible mechanisms are incompletely understood. To determine the impact of diet-induced obesity on pulmonary host defense against K. pneumoniae, we fed 6-wk-old male C57BL/6j mice a normal diet (ND) or high-fat diet (HFD) (13% vs. 60% fat, respectively) for 16 wk. Mice were intratracheally infected with Klebsiella, assayed at 24 or 48 h for bacterial colony-forming units, lung cytokines, and leukocytes from alveolar spaces, lung parenchyma, and gonadal adipose tissue were assessed using flow cytometry. Neutrophils from uninfected mice were cultured with and without 2-deoxy-d-glucose (2-DG) and assessed for phagocytosis, killing, reactive oxygen intermediates (ROI), transport of 2-DG, and glucose transporter (GLUT1-4) transcripts, and protein expression of GLUT1 and GLUT3. HFD mice had higher lung and splenic bacterial burdens. In HFD mice, baseline lung homogenate concentrations of IL-1ß, IL-6, IL-17, IFN-γ, CXCL2, and TNF-α were reduced relative to ND mice, but following infection were greater for IL-6, CCL2, CXCL2, and IL-1ß (24 h only). Despite equivalent lung homogenate leukocytes, HFD mice had fewer intraalveolar neutrophils. HFD neutrophils exhibited decreased Klebsiella phagocytosis and killing and reduced ROI to heat-killed Klebsiella in vitro. 2-DG transport was lower in HFD neutrophils, with reduced GLUT1 and GLUT3 transcripts and protein (GLUT3 only). Blocking glycolysis with 2-DG impaired bacterial killing and ROI production in neutrophils from mice fed ND but not HFD. Diet-induced obesity impairs pulmonary Klebsiella clearance and augments blood dissemination by reducing neutrophil killing and ROI due to impaired glucose transport.


Diet , Glucose/metabolism , Host-Pathogen Interactions , Klebsiella Infections/microbiology , Klebsiella pneumoniae/physiology , Neutrophils/metabolism , Obesity/microbiology , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Adiposity/drug effects , Animals , Bacterial Load/drug effects , Biological Transport/drug effects , Blood Glucose/metabolism , Body Weight/drug effects , Bone Marrow/pathology , Bronchoalveolar Lavage Fluid/cytology , Cytokines/metabolism , Deoxyglucose/pharmacology , Diet, High-Fat , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 3/genetics , Glucose Transporter Type 3/metabolism , Glycolysis/drug effects , Host-Pathogen Interactions/drug effects , Klebsiella Infections/blood , Klebsiella Infections/complications , Klebsiella pneumoniae/drug effects , Leukocyte Count , Lung/microbiology , Lung/pathology , Male , Mice, Inbred C57BL , Neutrophils/drug effects , Obesity/blood , Obesity/complications , Phagocytosis/drug effects , Pneumonia/microbiology , Pneumonia/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spleen/microbiology
...